
Unbounded sequences of stable limit cycles
in the delayed Duffing equation: an exact analysis

Si Mohamed Sah1, Bernold Fiedler2, B. Shayak3 , Richard H. Rand3,4

1Department of Mechanical Engineering,
Technical University of Denmark, Denmark

2Institut für Mathematik, Freie Universität Berlin, Germany
3Theoretical and Applied Mechanics, Sibley School of Mechanical and

Aerospace Engineering, Cornell University, Ithaca, New York 14853 USA
4Department of Mathematics, Cornell University, Ithaca,

New York 14853 USA

version of August 20, 2019

Abstract

The delayed Duffing equation ẍ(t) + x(t − T ) + x3(t) = 0 is shown to possess
an infinite and unbounded sequence of rapidly oscillating, asymptotically stable
periodic solutions, for fixed delays such that T 2 < 3

2π
2. In contrast to several

previous works which involved approximate solutions, the treatment here is exact.

1 Introduction

This work concerns a differential-delay equation (DDE) known as the delayed Duffing
equation

ẍ(t) + x(t− T ) + x(t)3 = 0 , (1.1)

where T > 0 is the time delay. The existence of an infinite number of stable limit
cycles, i.e. of asymptotically stable periodic solutions, in this DDE was first suggested
in a paper by Wahi and Chatterjee [WaCha04]. Formally and to leading order, they
performed the method of averaging and obtained a slow flow that predicted infinitely
many stable limit cycles. In their DDE, the time delay was fixed at T = 1. Mitra&al
[MiChaBa17] studied the same DDE with an added linear stiffness. By assuming an
approximate solution in harmonic form x(t) = A sin(ωt), they claimed that the system
exhibits an infinite number of stable limit cycles for any value of the time delay T . In
a paper by Davidow&al [DaShaRa17], the same claim was supported by a) harmonic
balance, b) Melnikov’s integral with Jacobi elliptic functions, and c) the introduction
of damping.
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Strictly speaking, however all these works on the delayed Duffing equation (1.1) were
restricted to small amplitudes of the limit cycles. In our work, we present an exact
treatment of (1.1), in the limit of unboundedly large amplitudes. In particular, the
previously studied infinite sequences of “stable limit cycles” lose stability, eventually,
for delays T such that T 2 > 3

2
π2.

Section 2 gives a brief account of the numerical integration method used for our sim-
ulations. In section 3 we study exact periodic solutions xn(t) of a slightly generalized
Duffing ordinary differential equation (ODE), with vanishing time delay T = 0; see
(3.1). We show how the non-delay ODE solutions xn(t) of minimal (or fundamental)
periods pn lift to exact solutions of the original delayed Duffing DDE (1.1) with positive
delay T > 0, provided their minimal periods

pn = 2T/n (1.2)

are integer fractions of the double delay 2T . In particular we show how the more
and more rapidly oscillating periodic solutions xn(t) develop unbounded amplitudes
An ↗ ∞, for n → ∞. In section 4 we indicate how to determine the amplitudes An

of the lifted solutions xn , numerically and by series expansions for n → ∞. Section
5 recalls our stability results from [Fie&al19]. These mathematical results basically
assert local asymptotic stability of the solutions xn(t), for any fixed positive delay T
such that T 2 < 3

2
π2 and for sufficiently large odd n = 1, 3, 5, . . . . They also show

instability, for sufficiently large even n = 2, 4, 6, . . . . For full mathematical details,
including added linear stiffness, we refer to [Fie&al19]. We conclude with numerical
illustrations of our results, in section 6, and a short summary 7.
Acknowledgment. Just as the more mathematically inclined account in [Fie&al19],
the present work has originated at the International Conference on Structural Nonlinear
Dynamics and Diagnosis 2018, in memoriam Ali Nayfeh, at Tangier, Morocco. We are
deeply indebted to Mohamed Belhaq, Abderrahim Azouani, to all organizers, and to
all helpers of this outstanding conference series. They indeed keep providing a unique
platform of inspiration and highest level scientific exchange, over so many years, to
the benefit of all participants. This work was partially supported by DFG/Germany
through SFB 910 project A4. Authors RHR, BS and SMS gratefully acknowledge
support by the National Science Foundation under grant number CMMI-1634664.

2 Numerical integration

For zero delays, T = 0, the delayed Duffing DDE (1.1) reduces to a non-delayed
ordinary differential equation (ODE) known as the classical Duffing equation. The
equation is conservative and hence exhibits a continuum of periodic orbits, rather than
any asymptotically stable limit cycles.
Even for arbitrarily small fixed positive delays, T > 0, in contrast, approximate analysis
and numerical simulations suggest that an infinite number of stable limit cycles may
coexist, their amplitudes going to infinity [DaShaRa17].
Figure 2.1 shows the time history (a) and phase plane (b) of the first three stable limit
cycles obtained by numerical integration of the delayed Duffing DDE (1.1), for T = 0.3
and with different initial conditions. The numerical integrations in the present work
were performed using the Python library pydelay for DDEs [Flu11]. The integrator
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Figure 2.1: (a) Time histories of some periodic solutions xn(t) for the delayed Duffing DDE (1.1) with
fixed delay T = 0.3. (b) Nested phase plane plots (xn(t), ẋn(t)) of the periodic orbits xn with minimal
period 2T/n, n = 1, 3, 5. Black dot corresponds to equilibrium point.

is based on the Bogacki-Shampine method [BoSha89]. The maximal step size used to
produce the plots in the present work was fixed at ∆t = 10−4. See section 6 for further
numerical examples.

3 Lifting periodic solutions from the non-delayed to
the delayed Duffing equation

In this section we show the existence of infinitely many rapidly oscillating periodic
solutions of specific periods p in the delayed Duffing DDE (1.1). Our approach is based
on a lift of certain periodic solutions of the ordinary non-delayed Duffing ODE (3.1)
below, with minimal (or, fundamental) period p, to periodic solutions of the delayed
Duffing DDE (1.1) with time delay T . We will show this remarkable fact for minimal
periods p which are integer fractions of the doubled delay 2T = np ; see claim (1.2).
We first recall some elementary facts on the non-delayed Duffing ODE, in subsection
3.1. We separately address the cases of even and odd fractions n in subsections 3.2 and
3.3, respectively.

3.1 General Duffing equation

We consider the following two general forms of the classical Duffing ODE [KoBr11]:

ẍ(t) + (−1)nx(t) + x(t)3 = 0, n = 1, 2, 3, . . . , (3.1)
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ẋ

c)

Figure 3.1: Three dimensional plots of Hamiltonian level sets (3.2) in (a,b), and projections into the
(x, ẋ) plane in (c,d), for the general non-delayed Duffing ODE (3.1). (a,c) n even: the single-well
Duffing ODE (3.13). (b,d) n odd: the double-well Duffing ODE (3.16). The Hamiltonian H of the
double-well Duffing equation (3.16) in (b,d) can be strictly negative (green), zero (blue), or strictly
positive (red) as assumed in (3.3). Black dots correspond to equilibrium points.

The time-independent Hamiltonian energy of (3.1) takes the form

H(t) = 1
2
ẋ2 + 1

2
(−1)n x2 + 1

4
x4 . (3.2)

See Figure 3.1. For even n the Hamiltonian is always positive; see Figure 3.1a,c.
For odd n, however, see Figure 3.1b,d: the Hamiltonian is either strictly negative
(green), identically zero (blue) or strictly positive (red), depending on the ODE initial
conditions. Note how single trajectories in the (x, ẋ)-plane are point symmetric to the
origin, if and only if the positive energy condition

H > 0 (3.3)

is satisfied. We assume this restriction to hold throughout our further analysis.
For H > 0, we may time-shift solutions (xn(t), ẋn(t)) of (3.1) such that the initial
conditions

0 < xn(0) =: An , ẋn(0) = 0, (3.4)

are satisfied. In particular, An = max |xn(t)| is the amplitude of the solution xn. For
odd n, note how our positivity condition (3.3) requires an amplitude An >

√
2 in (3.2);
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see the red curve in Figure 3.1b,d, outside the blue figure-8 shaped separatrix loops.
The periodic closed curves fill the part of the phase space (x, ẋ) where H > 0. Each
periodic orbit corresponds to specific initial conditions and possesses a specific minimal
period.
The exact periodic solutions of the Duffing ODE (xn(t), ẋn(t)) of (3.1) are easily de-
termined. Indeed the energy H ≡ E is identically constant. Solving (3.2) for ẋ and
classical separation of variables therefore lead to the elliptic integrals

t =

∫ xn(t)

xn(0)

dx

ẋ(t)
= ±

∫ An

xn(t)

dx√
2E − (−1)n x2 − x4/2

. (3.5)

Here we have substituted the initial condition (3.4) for xn(0). The minimal (funda-
mental) period pn can be determined as the special case t = pn/4, where symmetry
implies xn(t) = 0:

1
4
pn =

∫ An

0

dx√
(2E − (−1)n x2 − x4/2)

. (3.6)

Evaluating the invariant Hamiltonian Hn ≡ E at the initial condition (3.4) provides
the energy

Hn = E = 1
2

(−1)nA2
n + 1

4
A4

n (3.7)

and the explicit elliptic integral

1
4
pn =

∫ An

0

dx√
(A2

n − x2) ((−1)n + A2
n/2 + x2/2)

. (3.8)

The elliptic integral (3.5) allows us to express the exact periodic solution of the general
Duffing ODE (3.1) in terms of Jacobi elliptic function as

xn(t) = An cn(ωn t,mn). (3.9)

Here cn denotes the Jacobi elliptic cosine function. The arguments An, ωn and 0 <
mn < 1 are the amplitude, the angular frequency, and the elliptic modulus, respectively.
The frequency ωn and the modulusmn in the solution (3.9) are related to the amplitude
An such that

mn =
A2

n

2(A2
n + (−1)n)

and ωn =
√
A2

n + (−1)n . (3.10)

The minimal period (3.8) can be expressed in terms of the complete elliptic integral of
the first kind K ≡ K(mn) as

pn = 4K/ωn. (3.11)

See [Rand94]. Figure 3.2 indicates the relation between amplitude and frequency for the
general Duffing ODE (3.1). The two black curves are obtained from the second equation
of (3.10), and they correspond to the relation between amplitude and frequency of the
periodic solutions (3.9) in the non-delayed Duffing ODE (3.1), for n odd (upper curve)
and n even (lower curve). Each point represents a periodic orbit of the general Duffing
ODE (3.1). In the phase plane, each of the black curves therefore indicates a foliation by
periodic solutions. For the delayed Duffing equation (1.1), the same periodic solutions
xn of minimal period pn = 2T/n on the upper curve (n odd) will turn out locally
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Figure 3.2: The relation between amplitude A and frequency ω of the periodic solutions in the non-
delayed Duffing ODE (3.1) obtained from the second equation of (3.10). Upper curve for n odd and
lower curve for n even. Only the marked points on these two curves correspond to periodic solutions
xn(t) of the delayed Duffing DDE (1.1). The time delay for this plot is T = 3.

asymptotically stable, for T 2 < 3
2
π2 and large n, while large n of even parity (lower

curve) always turn out linearly unstable; see Theorems 5.1, 5.2 below.
Our lift construction from solutions of the non-delayed Duffing ODE (3.1) to the delayed
Duffing ODE (1.1) is based on two interpretations of the mathematical expression
x(t−T ). On the one hand, x(t−T ) represents a delay, as in (1.1). The same expression,
on the other hand, represents a periodic solution when equated to ±x(t) by

xn(t− T ) = (−1)nxn(t) . (3.12)

Here 2T represents any (not necessarily minimal) period of the periodic solution x(t).
Indeed, any positive energy solution of the Duffing ODE (3.1) is periodic and will auto-
matically satisfy the periodicity condition (3.12), for some T > 0. Upon substitution of
the periodicity condition (3.12), however, the non-delayed Duffing ODE (3.1) produces
the delayed Duffing DDE (1.1), where now the (half) period T represents the delay.
Thus any periodic solution of the Duffing ODE (3.1) with periodicity condition (3.12)
lifts to a periodic solution of the DDE (1.1), for that choice of the delay T . The marked
points (red) on the two black curves in Figure 3.2, for example, correspond to periodic
solutions of the delayed Duffing DDE (1.1), with delay T = 3.
Actually, the non-delayed ODE Duffing equation (3.1) possesses an uncountable con-
tinuum of periodic orbits, foliating the phase plane. The number of periodic orbits
xn which satisfy the periodicity condition (3.12), however, is (at most) countable. In
particular, our lift construction from the non-delayed Duffing ODE (3.1) to the de-
layed Duffing DDE (1.1) restricts the allowable points on the curves in Figure 3.2 to a
countable set and therefore produces only a countable set of periodic solutions for the
delayed Duffing DDE. We do not claim that our lift construction covers all possible

6
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Figure 3.3: Solutions of the single well Duffing ODE (3.13), alias even n in the delayed Duffing DDE
(3.1). Dashed red: solutions xn(t) of (3.13). Dotted blue: shifted delayed solutions xn(t− T ), T = 2.

periodic solutions of the DDE (1.1); in section 5 we will see indications of additional
periodic solutions which cannot be obtained by our lift.
In the following we will further detail the lift construction (3.12) which is based on the
known exact periodic solutions (3.9) of the general Duffing ODE (3.1). We consider
the two cases, n even and n odd, separately.

3.2 Even n

For even n, the general Duffing ODE (3.1) reduces to the single-well case

ẍ(t) + x(t) + x(t)3 = 0. (3.13)

By (3.9), the exact periodic solutions are expressed as

xn(t) = An cn(ωn t,mn),

where now (3.10) becomes

mn =
A2

n

2(A2
n + 1)

and ωn =
√
A2

n + 1. (3.14)

According to (3.11), minimal periods p decrease monotonically from p = 2π, at ampli-
tude A = 0, to p = 0, for unbounded amplitudes A↗∞; see Figure 3.2.
To perform the lift from the Duffing ODE (3.13) to the Duffing DDE (1.1), we fix a
time delay T (black dot T = 2 in Figure 3.3), a priori, such that T < 2π. Then we
can always find a solution (3.9) to (3.13) with minimal period p2 = T ; see solution
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x2(t) in Figure 3.3. If we shift the curve of x2(t) to the right by T we obtain a new
curve x2(t−T ) that coincides with x2(t) = x2(t−T ); see Figure 3.3b. We can also find
another solution x4(t), of larger amplitude A4 > A2, whose minimal period is p4 = T/2.
Shifting by T we obtain a new curve x4(t−T ) that coincides with x4(t) = x4(t−T ), see
Figure 3.3b again. In the same manner, we can find infinitely many periodic solutions
xn(t) with minimal periods pn = 2T/n, for n = 2, 4, 6, . . . . After time shift by their
shared (non-minimal) period T we obtain

xn(t− T ) = xn(t), for all even n. (3.15)

Substituting (3.15) into (3.13) lifts all those ODE Duffing solutions xn(t) to the delayed
Duffing DDE (1.1), for fixed delay T < 2π. Note how pn ↘ 0 implies unbounded
amplitudes An ↗ ∞, for n → ∞. As the amplitudes An of the periodic solutions
of the Duffing ODE (3.13) increase to infinity, the minimal periods pn decrease to
zero. Thus we obtain an unbounded sequence of more and more rapidly oscillating
periodic solutions, with minimal periods T, T/2, T/3, . . . , which are also periodic with
(non-minimal) period T . This proves our claim (1.2), for even n.

3.3 Odd n

For odd n, the general Duffing ODE (3.1) reduces to the double-well case

ẍ(t)− x(t) + x(t)3 = 0. (3.16)

Any solution conserves the Hamiltonian energy

H = 1
2
ẋ2 − 1

2
x2 + 1

4
x4 . (3.17)

We recall how the phase portrait of the double-well Duffing ODE (3.16) is characterized
by a figure-8 shaped separatrix H = 0; see the blue curve in Figure 3.1b,d. For
positive energy H > 0, the (red) solutions of (3.16) oscillate around the exterior of the
separatrix. Again, minimal periods p decrease monotonically: this time from p = ∞,
at the separatrix amplitude A =

√
2, to p = 0, for A↗∞.

Since each level of positive energy H > 0 consists of a single periodic orbit (x, ẋ),
with odd force law, the time taken to travel from any point (x, ẋ) on a level set to
its antipode (−x,−ẋ) is half its minimal period, p/2. Indeed this fact holds for any
odd force law, by time reversibility of the oscillator. Therefore, every solution of the
double-well Duffing ODE (3.16) with positive energy H and minimal period p satisfies
the oddness symmetry

x(t) = −x(t− p/2) , (3.18)

for all t.
To perform the lift from the double-well Duffing ODE (3.16) to the delayed Duffing
DDE (1.1), we now fix any time delay T > 0 (black dot T = 2 in Figure 3.4), this
time without any further constraint. For p1 := 2T , the delay T coincides with half
the minimal period of the solution x1(t) of the non-delayed double-well Duffing ODE
(3.16). The oddness symmetry (3.18) at half period p1/2 = T therefore implies that
x1(t) also solves our original delayed Duffing DDE (1.1),

ẍ+ x(t− p/2) + x3 = 0 . (3.19)
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Figure 3.4: Solutions of the double-well Duffing ODE (3.16), alias odd n in the delayed Duffing DDE
(3.1). Solid red: solutions xn(t) of (3.16). Dotted blue: shifted delayed solutions xn(t− T ), T = 2.

Analogously, we can perform the lift from the non-delayed double-well Duffing ODE
(3.16) to the delayed Duffing DDE (1.1), for any odd n = 1, 3, 5, . . . , as follows. Let xn
denotes the ODE solution of (3.16) with minimal period pn := 2T/n. Then oddness
symmetry (3.18) implies

xn(t− T ) = −xn(t), for all odd n. (3.20)

Substitution into (3.16) implies that xn(t) also solves (1.1). See Figure 3.4a,b for
illustrations of the cases n = 1, 3. Note how pn ↘ 0 implies unbounded amplitudes√

2 < An ↗∞, for n→∞. Thus we obtain an unbounded sequence of more and more
rapidly oscillating periodic solutions to the delayed Duffing DDE (1.1), with minimal
periods 2T, 2T/3, 2T/5, . . . , which are also periodic with (non-minimal) period 2T .
This proves our claim (1.2), for odd n.
By (3.9), the exact periodic solutions xn(t) are expressed as Jacobi elliptic functions

xn(t) = An cn(ωn t,mn),

where (3.10) becomes

mn =
A2

n

2(A2
n − 1)

and ωn =
√
A2

n − 1 . (3.21)

As we have mentioned in subsection 3.1, the positivity and symmetry condition H > 0
becomes equivalent to A >

√
2.

Figure 3.5 schematically illustrate the lift from the non-delayed Duffing ODE (3.1)
to the delayed Duffing DDE (1.1), for both even and odd n. This lift will be used
in the next section to numerically determine the amplitudes An of the lifted, rapidly
oscillating periodic solutions of the DDE (1.1).
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tom) to the delayed Duffing DDE (1.1) (top).

4 Amplitudes

We sketch two practical approaches to determine the amplitudes An of the rapidly os-
cillating periodic solutions xn(t) in the delayed Duffing equation (1.1). One approach is
essentially numerical; the other approach is analytic, based on an exact series expansion
at n =∞ and at infinite amplitude.
The amplitudes An of the lifted solutions xn(t) arise from the closed curves H > 0 in
the non-delayed Duffing ODE (3.1) with specific values

p ≡ pn = 2T/n, n = 1, 2, 3, . . . , (4.1)

of their minimal period. See (1.2) and section 3 for details.
Substitution of (4.1) into the explicit elliptic integral (3.11) provides the implicit equa-
tion

2T/n = p = 4K(m(An))/ω(An) (4.2)

for An, given T and n. Here the functions m(An) and ω(An) are specified in (3.10); we
have suppressed explicit dependence on the parity of n in this abbreviated notation.
For high precision numerical solutions An of (4.2) we rely on the Python-based Newton
solver fsolve. The Newton-method requires initial approximations for the desired so-
lution An; for initial guesses we use the formal expansions in [DaShaRa17], Eq. (4). The
complete elliptic integral K(m) in (4.2) is evaluated using the Python-based quadra-
ture quad. The integration is performed using a Clenshaw-Curtis method which uses
Chebyshev moments. For T = 3, for example, the reference amplitudes An corre-
sponding to the red marked points in Figure 3.2 are found to be A1 = 1.74566491. . . ,
A2 = 2.16089536. . . , A3 = 3.90053028. . . , and A4 = 4.79499435. . . .
Note that time delays T and T̄ share the same reference amplitudes, if the relation
T/n = T̄ /n̄ holds. Here n and n̄ are required to be both odd, or both even. For
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example the amplitude An = An(T ), for n = 1 and T = 0.1, coincides with the
amplitude An̄(T̄ ), for n̄ = 3 and T̄ = 0.3.
Our second approach is analytic in nature. We start from (4.2) with an exact Taylor
expansion of p(A) := 4K(m(A))/ω(A), at A = ∞, with respect to 1/A. For even n
the functions m(A) and ω(A) have been specified in (3.14). Up to errors of order 13 in
1/A we obtain

p =
γ√
π

(
A−1 −

(
1
2

+ 4π2/γ2
)
A−3 +

(
1
2

+ 6π2/γ2
)
A−5 −

(
5
8

+ 9π2/γ2
)
A−7+

+
(

85
96

+ 14π2/γ2
)
A−9 −

(
87
64

+ 903
40
π2/γ2

)
A−11

)
+O

(
A−13

)
.

(4.3)

Here γ := Γ(1/4)2 denotes the square of the Euler Gamma-function, evaluated at 1/4.
Note p = 0 at A =∞. Inverting the above series provides an expansion of the inverse
function A(p). Specifically, the Taylor expansion of A as a function of 1/p at p = 0,
up to errors of order 11 in 1/p reads

A =
γ√
π

(
p−1 − π

(
1
2
γ2 + 4π2

)
γ−4p− 2π4

(
γ2 + 16π2

)
γ−8p3−

− 8π7
(
3γ2 + 56π2

)
γ−12p5 + 1

96
π4
(
γ8 − 36 864 γ2π6 − 737 280π8

)
γ−16p7+

+ 1
960
π5
(
5γ10 + 328γ8π2 − 6 758 400 γ2π8 − 140 574 720 π10

)
γ−20p9

)
+

+O
(
p11
)
.

(4.4)

Inserting p = 2T/n readily provides Taylor expansions of A with respect to n, in the
limit of large n →∞ and for any fixed delay T > 0. Alternatively, of course, we may
consider n fixed and read (4.4) as an expansion with respect to small delays T > 0, or
with respect to any small combination of T/n.
For odd n, the analogous expansions have to be based on the functions m(A) and ω(A)
specified in (3.21). With the same notation as above we obtain

p =
γ√
π

(
A−1 +

(
1
2

+ 4π2/γ2
)
A−3 +

(
1
2

+ 6π2/γ2
)
A−5 +

(
5
8

+ 9π2/γ2
)
A−7+

+
(

85
96

+ 14π2/γ2
)
A−9 +

(
87
64

+ 903
40
π2/γ2

)
A−11

)
+O

(
A−13

)
.

(4.5)

A =
γ√
π

(
p−1 + π

(
1
2
γ2 + 4π2

)
γ−4p− 2π4

(
γ2 + 16π2

)
γ−8p3+

+ 8π7
(
3γ2 + 56π2

)
γ−12p5 + 1

96
π4
(
γ8 − 36 864 γ2π6 − 737 280π8

)
γ−16p7−

− 1
960
π5
(
5γ10 + 328γ8π2 − 6 758 400 γ2π8 − 140 574 720 π10

)
γ−20p9

)
+

+O
(
p11
)
.

(4.6)

Comparing the even and odd cases, we observe how their sign patterns are related by
the complex linear transformation p 7→ ip, A 7→ iA. This is in agreement with a scaling
of the Duffing ODE.
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We emphasize that all Taylor expansions (4.3)–(4.6) are convergent and hence can be
performed up to any order. Worries like secular terms and other nuisances ubiquitous
in formal asymptotics, disappear. In summary, analytic expansions work best for
small T/n, e.g. for large n, where numerical methods face increasing difficulties. The
numerical approach, on the other hand, is the method of choice for larger T/n, e.g. for
small n.

5 Stability

In this section we summarize results from [Fie&al19] on local asymptotic stability
and instability of the rapidly oscillating periodic solutions xn(t), n = 1, 2, 3, . . . , of
the delayed Duffing DDE (1.1), as constructed in section 3. We recall how the ODE
solutions xn of (3.1) with positive energy H are uniquely determined by their minimal
periods pn = 2T/n, where T > 0 denotes the delay in (1.1); see (1.2) and (3.9)–(3.11).
To be precise we recall that a periodic reference orbit x∗ is called stable limit cycle,
or also locally asymptotically stable, if any other solution x(t), which starts sufficiently
nearby, remains near the set x∗ and converges to that set, for t→∞. A sufficient (but
not necessary) condition for local asymptotic stability is linear asymptotic stability. In
other words, all Floquet (alias Lyapunov) exponents η of the periodic orbit x∗ possess
strictly negative real part (except for the algebraically simple trivial exponent η = 0).
We speak of linear instability, in contrast, if x∗ possesses any Floquet (alias Lyapunov)
exponent with strictly positive real part. Deeper results on unstable manifolds then
imply nonlinear instability. In fact, there exists a solution x(t) which is defined for all
t ≤ 0 and converges to x∗ in backwards time t→ −∞.
The stability results of [Fie&al19] specialize to our present context as follows.

Theorem 5.1. Let n be odd and assume

0 < T 2 < 3
2
π2. (5.1)

Moreover assume that n ≥ n0(T ) is chosen large enough.
Then the periodic orbit xn of the delayed Duffing equation (3.1) is asymptotically stable,
both linearly and locally.

Theorem 5.2. Let n be even, T > 0, and assume n ≥ n0(T ) is chosen large enough.
Then the periodic orbit xn of the delayed Duffing equation (3.1) is linearly and nonlin-
early unstable.

For the leading Floquet exponent η, i.e. the nontrivial exponent with real part closest
to zero, the precise asymptotics

η = 2
3
(−1)n+1T 2 + . . . (5.2)

has been derived, for even and odd n→∞.
Towards the stability boundary T 2 = 3

2
π2 of Theorem 5.1, the periodic orbits xn with

odd n lose stability, and undergo a torus bifurcation of Neimark-Sacker-Sell type. In
particular, rational rotation numbers on the bifurcating torus will indicate periodic
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Figure 6.1: Time histories (a) and phase plane plots (b) for delay T = 0.5. Red: exact periodic
solution x1(t) for n = 1, with reference amplitude A1 = 7.5139958 . . . and minimal period 2T ; see
(3.9). Blue: simulated solution of the delayed Duffing DDE (1.1) with initial history function (6.1)
and initial amplitude A = 4.3. Green: initial history function (6.1). Black: final state of the history
function (6.1). Note the convergence of the blue solution to the locally asymptotically stable red limit
cycle x1, for large times t.

orbits of the delayed Duffing DDE (3.1) which are not lifts of the ODE Duffing orbits
xn studied in the present paper.
We caution the reader that Floquet theory for delay differential equations is not an
entirely trivial matter. Therefore we only illustrate our stability results in the next
section, numerically. For detailed mathematical proofs we have to refer to [Fie&al19].

6 Discussion

Figure 6.1 plots two solutions of the delayed Duffing equation (1.1) with delay T = 0.5:
a numerical solution x(t) (blue), and the lifted exact solution x1(t) (red) specified in
(3.9). The minimal period p1 of x1(t) coincides with 2T ; see (1.2). Figure 6.1 contains
the time history (a) and the phase plane (b). The green curve denotes the initial history
function

(x(t), ẋ(t)) = (A cn(ω t,m),−Aω sn(ω t,m) dn(ω t,m)) , (6.1)

for −T < t < 0 and with initial amplitude A = 4.3. The values ofm and ω are obtained
from (3.10) with n = 1. Note how x(t) is a solution of the non-delayed Duffing ODE
(3.1) with minimal period p = p(A) = 1.7972608 . . . . However, the initial history
function x(t) is not a solution of the delayed Duffing DDE (1.1), because T = 0.5 is
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Figure 6.2: Time histories of x(t), top (a), and of ẋ(t), bottom (b), for delay T = 0.5. Exact solutions
xn(t) for n = 1 (red) and n = 2 (teal); see (3.9). Their amplitudes are A1 = 7.5139958 . . . and
A2 = 14.7834172 . . . , respectively. The numerical solution of the delayed Duffing DDE (1.1) with
initial amplitude A = 1.42 (blue) illustrates wide asymptotic stability of the stable limit cycle x1. The
numerical solution with initial amplitude A = 14.77 (violet), quite close to A2, indicates a heteroclinic
orbit from the unstable periodic orbit x2 to the stable limit cycle x1.

not an integer multiple of the larger ODE period p = 1.7972608 . . . . Therefore the
simulated solution x(t) of the delayed Duffing DDE (3.1) (blue), is not periodic.
Instead, the simulated solution (blue), with initial amplitude A = 4.3, approaches the
exact periodic solution x1(t) (red) of minimal period 2T and with amplitude A1 =
7.5139958 . . . . Indeed, the black curve indicates the history function, for 100 − T <
t < 100, of the final state of the blue solution x(t) at t = 100. The stability result of
Theorem 5.1 only asserts local convergence to xn for large odd n, but not for n = 1.
The convergence to x1 indicates how that stability result might actually extend, all
the way, down to the smallest possible choice n = 1. Moreover, “local” attraction to
x1 holds sway over quite a distance, down to an initial amplitude A = 4.3 significantly
smaller than the asymptotic amplitude A1 = 7.5139958 . . . of x1.
Figure 6.2 compares two lifted exact periodic solutions, x1(t) (red) and x2(t) (teal). Two
numerical solutions of the delayed Duffing DDE (1.1) for T = 0.5 are included, which
arise from the two initial history functions (6.1) with initial amplitudes A = 1.42 (blue)
and A = 14.77 (violet), respectively. The reference amplitudes corresponding to the
exact n = 1 (red) and n = 2 (teal) periodic solutions (3.9) are A1 = 7.5139958 . . . and
A2 = 14.7834172 . . . , respectively. Figure 6.2 indicates how both simulated solutions
(blue and violet) approach the exact stable limit cycle x1 (red); see Theorem 5.1. Also
note how the simulated solution with initial condition A = 14.77 (violet) starts very
close to the exact, but linearly unstable, periodic solution (teal) of A2 = 14.7834172 . . . ,
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but eventually diverges as time t increases. See Theorem 5.2. This indicates the
presence of a heteroclinic orbit x(t), from x2 to x1, which is defined for all positive and
negative times t and converges to x2, for decreasing t↘ −∞, and to x1, for increasing
t↗ +∞.
Our periodicity Ansatz requires half minimal periods p/2 = T/n to be integer fractions
n = 1, 2, 3, . . . of the delay T . Of course we have to caution the reader that there may
be many periodic solutions of the DDE (1.1) which are not captured by this Ansatz.

7 Conclusion

In this work we showed how the Duffing equation (1.1) with time delay T possesses an
unbounded sequence of infinitely many rapidly oscillating periodic solutions xn(t), n =
1, 2, 3, . . . .
Each solution xn arises from a periodic solution xn(t) of the non-delayed classical
Duffing equation (3.1) with minimal period pn = 2T/n. In particular, the classical non-
delayed Duffing oscillator provides an unbounded sequence of exact periodic solutions
of the delayed Duffing equation. Based on the Hamiltonian energy of the classical
Duffing equation, and standard Jacobi elliptic integrals, we have also derived high-
precision reference amplitudes of these periodic solutions xn.
For delays T such that 0 < T 2 < 3

2
π2, and for odd n large enough, the solutions xn are

locally asymptotically stable limit cycles. For large even n, in contrast, the solutions
xn are linearly and nonlinearly unstable.
We have illustrated our results with numerical simulations, for low n = 1, 2.
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